TWO NEW FLAVONE GLYCOSIDES FROM CIRSIUM LINEARE*

N. Morita, M. Shimizu and M. Arisawa

Faculty of Pharmacy, University of Toyama, Toyama, Japan

(Revised Received 26 July 1972. Accepted 15 September 1972)

Key Word Index—Cirsium lineare; Compositae; flavone glycosides; cirsilineol 4'-glucoside and cirsiliol 4'-glucoside.

Abstract—An examination of four species of *Cirsium* disclosed the presence of two new flavonoids in *C. lineare*. The structure of one was 5,4'-dihydroxy-6,7,3'-trimethoxyflavone (cirsilineol) 4'-monoglucoside and the other 5,3',4'-trihydroxy-6,7-dimethoxyflavone (cirsiliol) 4'-monoglucoside. Luteolin 7-glucoside was found in *C. suffultum*, and pectolinarin and linarin in *C. kamtschaticum* and *C. pectinellum*.

INTRODUCTION

WHILE investigating the distribution of flavonoids in Japanese Cirsium species, seven major flavonoids have already been reported from 23 species¹⁻⁵ (Table 1). In this report, two new groups of species were examined, one of which was found to have two new flavonoids, cirsilineol 4'-glucoside and cirsiliol 4'-glucoside, and the other group, pectolinarin and linarin.

TABLE 1. DISTRIBUTION OF FLAVONOIDS IN CIRSIUM

Flavonoids	Cirsium spp.	Flavonoids	Cirsium spp.
Pectolinarin (Group 1)	C. microspicatum, C. babanum var. otayae, C. japonicum, C. kaga- montanum, C. inundatum, C. micro-	Cirsimarin (Group 5)	C. maritimum, C. tanakae ssp. aomorense
	spicatum var. kiotoense, C. dipsa- colepis, C. brevicaule, C. yezoense	Rhoifolin (Group 6)	C. bitchuense
Luteolin 7- glucoside (Group 2)	C. matsumurae, C. matsumurae var. pubescens, C. yakusimense, C. amplexifolium, C. buergeri, C.	Rutin (Group 7)	C. arvense var. setosum (Cephalonoplos setosum)†
(010up 2)	nipponicum var. yoshinoi, C. gyo- janum, C. lucens, C. suffultum*	Pectolinarin and linarin (Group 8)	C. kamtschaticum,* C. pectinellum*
Luteolin 7-	C. sieboldi		
glucuronide (Group 3)		Cirsilineol -4'-glucoside and Cirsiliol	
Linarin (Group 4)	C. purpuratum, C. spinosum	-4'-glucoside (Group 9)	

^{*} Newly listed in this paper.

[†] By S. Kitamura, G. Murata and M. Hori.

^{*} Part VI in the series "Flavonoids of Cirsium". For Part V see N. Morita, M. Fukuta and M. Shimizu, Syoyakugaku Zasshi 19, 8 (1965).

¹ T. NAKAOKI and N. MORITA, Yakugaku Zasshi 79, 1338 (1959).

² T. NAKAOKI and N. MORITA, Yakugaku Zasshi 80, 1296 (1960).

³ N. Morita and M. Shimizu, Yakugaku Zasshi 83, 615 (1963).

⁴ N. Morita, M. Fukuta and M. Shimizu, Syoyakugaku Zasshi 18, 9 (1964).

⁵ N. Morita, M. Fukuta and M. Shimizu, Syoyakugaku Zasshi 19, 8 (1965).

RESULTS

The glycoside mixture isolated from leaf extracts of C. lineare, gave two brown spots in UV on polyamide TLC and PC and were respectively labelled A_o and B_o . They were isolated by silica gel column chromatography. Hydrolysis of A_o yielded D-glucose and an aglycone (A_1) . Both A_o and A_1 gave a negative Zircon-citric acid test. The UV specta of A_o , needles, m.p. 158–159°, and its aglycone (A_1) , yellowish needles, m.p. 208–210°, are presented in Table 2. Neither glycoside nor aglycone showed a bathochromic shift with sodium acetate, indicating 7-O-substitution in both. In addition A_o has a free 5-hydroxyl group, from the bathochromic shift with AlCl₃.

Solvent	Cirsilineol (A_I)	$4'$ -Glucoside (A_o)	Cirsiliol (B_1)	4'-Glucoside (B ₀)
EtOH +NaOAc	277, 344 276, 344	279, 336 279, 335	256, 274, 347	242, 277, 337
+NaOEt	268sh, 341, 410	279, 336	269, 347, 410	242, 274, 333
+AlCl ₃	260sh, 288, 360	294, 358	262, 283, 368	293, 257

TABLE 2. UV SPECTRA OF FLAVONE GLYCOSIDES AND THEIR AGLYCONES

The NMR spectrum of the diacetate (A_{II}) of A_I displayed signals typical of disubstituted B ring (Table 3.) The IR spectrum of permethylated A_{III} was found to be superimposable with that of 5,6,7,3',4'-pentamethoxyflavone. A_I afforded no greenish precipitate with SrCl₂, indicating no o-hydroxyl group to C-5 in A ring.⁶ Alkaline decomposition and oxidation with H_2O_2 of A_I both afforded vanillic acid as an acid portion, indicating 3'-OMe and 4'-OH substitution in the B ring. A_I is therefore 5,4'-dihydroxy-6,7,3'-trimethoxyflavone. In addition, oxidation with H_2O_2 of the aglycone obtained from the permethylate of A_o afforded vanillic acid, so A_o is cirsilineol 4'-monoglucoside.

TABLE 3. NMR	CHEMICAL	SHIFTS OF	PROTONS	OF	CIRSILINEOL-DIACETATE*	(shifts	(ppm)
measured in CDCl ₃)							

H-2′	H-5′	H-6′	H-8	H-3	OAc	ОМе
7·29 ^d	7·12 ^d	7·35 ^q	6.5	6.86	2·34 2·48	3·85, 3·91 3·99

^{*} Tetramethylsilane was the external reference (δ , 0.00).

The UV spectra of B_o , m.p. 215-217°, and its aglycone (B_I), m.p. 281°, are presented in Table 2. The NMR spectrum of the trimethylsilyl ether indicated a similar pattern of aromatic protons as A_o , two methoxyl groups, and a signal for the glucosyl C-1" proton at 5.05 ppm as 1H. Hydrolysis of B_o with HCl yielded aglycone (B_I) and D-glucose. B_I gave 5,6,7,3',4'-pentamethoxyflavone with Me₂SO₄ and a triacetate with Ac₂O. The NMR spectrum of the triacetate displayed a similar pattern as A_{II} , except for the number of

s—Singlet; d—doublet; q—quartet.

⁶ M. SHIMIZU and N. MORITA, Yakugaku Zasshi 88, 1451 (1968).

methoxyl and acetoxyl groups. Alkaline decomposition and oxidation with H_2O_2 both yielded protocatechuic acid, while oxidation with H_2O_2 of the aglycone obtained from the permethylate of B_o afforded vanillic acid. B_I is therefore 5,3',4'-trihydroxy-6,7-dimethoxy-flavone and B_o is the 4'-monoglucoside. Since A_I and B_I are novel natural products, we propose the names cirsilineol (I) and cirsiliol (II), respectively.

Using standard techniques, luteolin 7-glucoside was identified in leaf of C. suffultum, while pectolinarin and linarin were both found in leaf of C. kamtschaticum and C. pectinellum.

EXPERIMENTAL*

Plant material. Leaf of Cirsium lineare was collected at Hatimandake and C. suffultum at Unsen, Kyūshū. Cirsium kamtschaticum was collected at Nemuro and C. pectinellum at Memanbetsu, Hokkaido, Japan.

Isolation of Cirsilineol 4'-glucoside (A_o) and Cirsiliol 4'-glucoside (B_o). Crystals formed on standing of the concentrated MeOH leaf extract of C. lineare were combined with those obtained by EtOAc extraction of the aqueous concentrate. This mixture of two components was subjected to column chromatography on silica gel employing CHCl₃ and CHCl₃-MeOH (19:1) as eluents. The two eluted fractions, recrystallized from MeOH, afforded A_o and B_o .

Properties of A_o and B_o . A_o : Almost colorless microneedles, m.p. 158–159°. The dilute acid hydrolyzate reduced the Fehling reagent. PC, R_f 0.91 (60% AcOH), 0.81 (40% AcOH) (Calc. for $C_{24}H_{26}O_{12}$. H_2O : C, 54.96; H, 5.38. Found: C, 55.08; H, 5.68). B_o : Pale yellow needles, m.p. 215–217°, exhibited an orange yellow color with Mg + HCl, yellow with Zn + HCl. (Calc. for $C_{24}H_{26}O_{12}$. H_2O : C, 54.96; H, 5.38. Found: C, 55.08; H, 5.68.) NMR (TMS ether of B_o in CCl₄) δ ppm: 3.96 (6H, OMe \times 2), 5.05° (1H, glucosyl C_1 -H).

Cirsilineol (A₁) and Cirsiliol (B₁). Hydrolysis of A_0 (76·2 mg) with 10% H_2SO_4 afforded A_1 (48·2 mg), m.p. 208–210° (Calc. for $C_{18}H_{16}$ O₇: C, 62·79; H, 4·68. Found: C, 62·82; H, 4·79). Hydrolysis of B_0 with HCl afforded B_1 , m.p. 281° (MeOH) (Calc. for $C_{17}H_{14}O_7$: C, 61·80; H, 4·27. Found: C, 61·73; H, 4·38).

Permethylation of A_1 and B_1 (5,6,7,3',4'-pentamethoxyflavone (A_{III}). A mixture of A_1 , Me₂SO₄ and K₂CO₃ in MeCOEt was refluxed at 150–170° on oil bath. The CHCl₃ soluble portion of the product was chromatographed on silica gel and recrystallized from MeOH, A_{III} , m.p. 173–174°, was obtained. Its IR spectrum was found to be superimposable with that of an authentic specimen. A_{III} was also obtained from B_1 .

Permethylate of B₀ (B₁₁₁) and its hydrolysis (formation of Aglycone of B₁₁₁). A mixture of B₀, Me₂SO₄ and K₂CO₃ in MeCOEt was refluxed at 170–180° on oil bath; The CHCl₃ soluble portion of the product was purified by silica gel chromatography. B_{111} was hydrolysed with 10% H₂SO₄, and from AcOEt soluble portion of the reaction mixture, an aglycone (B_{1v}), m.p. 268–269°, negative to SrCl₂ test, was obtained.

Alkali decomposition of B_{IV}. B_{IV} was refluxed with 30% KOH for 1.5 hr, and separated to acid and phenolic portion as usual.

$PC R_f$	Toluene-HCOOH-HCOOEt (5:4:1)	60% AcOH	<i>n</i> -BuOH-pyrH ₂ O (6:4:3)
Acid	0.26	0.83	0.65
Vanillic acid	0.25	0.84	0.65

Acknowledgements—We are indebted to Mr. G. Murata, Faculty of Science, University of Kyōto, Japan, for identifying Cirsium plants. We thank Mr. M. Baba, Ureshino, Saga, Kyūshū, Japan, for collecting C. lineare. Thanks are also due to Mr. K. Shingyouchi, Faculty of Pharmacy, Univ. of Toyama, Japan, for his technical assistance and M. Morikoshi and H. Takami for the NMR spectra and elemental analyses.

^{*} All m.p.s were uncorrected. The sign in NMR data; m—multiplet.